Chapter 3 Answer Key
3.8 Exercises
A. Validity, Invalidity, Soundness and Unsoundness. True or False?
- F
- T
- F
- T
- F
- F
- F
- F
- T
- T
- T
- T
- F
- F
- F
- F
- T
- F
- F
- F
- T
- F
- T
- T
- T
- T
- F
- F
- T
- F
- F
- F
- T
- F
- F
- T
- T
- T
- T
- F
- T
- T
- T
- F
- F
- T
B. Truth Table Tests for Validity and Invalidity. Make truth tables to show that the following arguments are valid.
-
P Q (P → Q) ~ Q ~ P T T T T T F T F T T F T F F T F F T F T F T T F T T F F F F T F T F T F -
P Q R (P → Q) (Q → R) ~ R ~ P T T T T T T T T T F T F T T T F T T T T F F T F F T T F T T F F F T T F T F T T F F T F F F T F T F F T F T T F T T T T T F T T F F T F F T T T F F T F T F F F T F T F F T T F T T F F F F F T F F T F T F T F -
P Q R (P → Q) (Q → R) P R T T T T T T T T T T T T T F T T T T F F T F T F T T F F F T T T T T F F T F F F T F T F F T T F T T T T T F T F T F F T T T F F F F F F T F T F F T T F T F F F F T F F T F F F -
P Q R (P → Q) (Q → R) (P → R) T T T T T T T T T T T T T T F T T T T F F T F F T F T T F F F T T T T T T F F T F F F T F T F F F T T F T T T T T F T T F T F F T T T F F F T F F F T F T F F T T F T T F F F F T F F T F F T F -
P Q R S (P → Q) (Q → R) (R → S) (P → S) T T T T T T T T T T T T T T T T T T T F T T T T T T T F F F F F T T F T T T T T F F F T T T T T T T F F T T T T F F F T F F F F T F T T T F F F T T T T T T T T T F T F T F F F T T T F F F F F T F F T T F F F T F T T T T T T T F F F T F F F T F T T F F F F F T T T F T T T T T T T T T T T F T T F F T T T T T T F F F T F F T F T F T T T F F F T T T T T F T F F F T T T F F F T F F T F F F T T F T F F T T T T T T T T F F T F F T F F T T T F F F T F F F F T F T F F T F F T T T T T F F F F F T F F T F F T F F T F
C. Invalid truth tables. Make truth tables to show the following arguments are invalid.
-
P Q (P → Q) Q P T T T T T T T T F T T F F T F T F T T T F F F F F F F F -
P Q (P → Q) (Q → P) T T T T T T T T T F T F F F T T F T F T T T F F F F F T F F T F -
P Q R (P → Q) (Q → R) ~ P ~ R T T T T T T T T T F T F T T T F T T T T F F F T T F T F T T F F F T T F T F T T F F T F F F T F F T T F F T T F T T T T T T F F T F T F F T T T F F T F T F F F T F T F F T T T F F T F F F F T F F T F T F T F -
P Q R (P → Q) (Q → R) (R → P) T T T T T T T T T T T T T T F T T T T F F F T T T F T T F F F T T T T T T F F T F F F T F F T T F T T F T T T T T T F F F T F F T T T F F F T F F F T F T F F T T T F F F F F F T F F T F F T F -
P Q R S (P → Q) (Q → R) (R → S) (S → P) T T T T T T T T T T T T T T T T T T T F T T T T T T T F F F T T T T F T T T T T F F F T T T T T T T F F T T T T F F F T F F T T T F T T T F F F T T T T T T T T T F T F T F F F T T T F F F T T T F F T T F F F T F T T T T T T T F F F T F F F T F T T F F T T F T T T F T T T T T T T T T F F F T T F F T T T T T T F F F T F F T F T F T T T F F F T T T F F F T F F F T T T F F F T F F T F F F T T F T F F T T T T T T F F F F T F F T F F T T T F F F T F F F F T F T F F T F F T T T F F F F F F F T F F T F F T F F T F
D. Truth Table Tests for Validity and Invalidity. Determine whether each argument is valid or invalid. Justify your answer with a truth table.
-
A (A → A) A T T T T T F F T F F Invalid
-
A (A → ~ A) ~ A T T F F T F T F F T T F T F Valid
-
A B (A → B) B A T T T T T T T T F T F F F T F T F T T T F F F F T F F F Invalid
-
A B (A → B) A B T T T T T T T T F T F F T F F T F T T F T F F F T F F F Valid
-
A B (A → A) ~ B ~ A T T T T T F T F T T F T F F T F F T F T F T T F T T F F F F T F T F T F Valid
-
A B (A → B) ~ A ~ B T T T T T F T F T T F T F F F T T F F T F T T T F F T F F F T F T F T F Invalid
-
A ~ ~ A T T F T F F T F Valid
-
A ~ ~ A T T F T F F T F Valid
-
A B C (A → B) (B → C) (A → C) T T T T T T T T T T T T T T F T T T T F F T F F T F T T F T T T T T T T T F F T F T T T F T F F F T T F T F F T T F T T F T F F T F F F F F T F F F T F T F F T T F T T F F F F T F F T F F T F Valid
-
A B C (~ A → B) (~ B → C) (~ A → C) T T T F T T T F T T T F T T T T T F F T T T F T T F F T T F T F T F T T F T F T T F T T T T F F F T T F T F F F F T T F F T T T F T T F T T T T F T T F T F T F T T F T T F T F F F F F T T F F F T F T T T F T T F F F T F F F T F F F T F F F Invalid
-
A B C (A → ~ B) (B → ~ C) (A → ~ C) T T T T F F T T F F T T F F T T T F T F F T T T T F T T T F T F T T T T F F T F T T F F T T F F T T T F F T T F T T T F F T T F T F T T F F T F F F T F T F F T F T T T T F F F T F F F T F T T F F T F T F F F T F F F F T T F F T T F F F T F Invalid
-
A B C ~ (A → B) ~ (B → C) ~ (A → C) T T T F T T T F T T T F T T T T T F F T T T F T T F F T T F T F T F T T F T F T T F T T T T F F F T T F T F F F F T T F F T T T F T T F T T T T F T T F T F T F T T F T T F T F F F F F T T F F F T F T T T F T T F F F T F F F T F F F T F F F Invalid
-
A B C (A → B) → (B → C) (A → B) (B → C) T T T T T T T T T T T T T T T T T T F T T T T T T F T T T T T F T F T T T F T F T T T T F F T T T F F T T F F F F F T T F F F F F T T F T T T T T T F T T T T T F T F F T T T T T F F T T T T F F F T F F F T F T T F F F F T T F F F F F F T F T F F F F F T F Valid
-
A B C (A → B) → (B → C) (B → C) (A → B) T T T T T T T T T T T T T T T T T T F T T T T T T F T T F T T T T F T T T F T F T T F F T T F F T F F T T F F F F F F F F T F F F T T F T T T T T T T T T F T T F T F F T T T T T F T T F F T T F F T F F F T F T T F T T F T F F F F F F F T F T F F T F F T F Invalid
-
A B C (A → B) → (B → C) ~ (A → B) ~ (B → C) T T T T T T T T T T F T T T F T T T T T F T T T T T T F F T T T F T T F T F T T T F T F T T T T F F F F T T T F F T T F F F F F T T F F T F F F F T T F T T T T T T F F T T F T T T F T F F T T T T T F F F T T F T T F F F T F F F T F T T F F T F F F T T F F F F F F T F T F F F T F T F F F Invalid
-
A B C (A → B) → (B → C) ~ (B → C) ~ (A → B) T T T T T T T T T T F T T T F T T T T T F T T T T T T F F T T F F T T T T F T T T F T F T T F F T T T T F F T F F T T F F F F F T F F F T T F F F T T F T T T T T T F T T T F F T T F T F F T T T T T F F T T F F F T T F F T F F F T F T T F F T T F F T F F F F F F F T F F F T F F F F F T F Invalid
E. Translation. Use the following translation key to translate the following arguments into a propositional logic. Determine whether each argument is valid or invalid. Justify your answer with a truth table. Use the truth values provided to determine whether each argument is sound or unsound.
- H→~F
H
~FF H (H → ~ F) H ~ F T T T F F T T F T T F F T F T F F T F T T T T F T T F F F F T T F F T F Valid; Sound
- P→E
~E
~PE P (P → E) ~ E ~ P T T T T T F T F T T F F T T F T T F F T T F F T F F T F F F T F T F T F Valid; Unsound
- P→R
~D→P
R→DD P R (P → R) (~ D → P) (~ R → D) T T T T T T F T T T F T T T T T F T F F F T T T T F T T T F T F T T F T T F F T T T T F F F T F F T T F T F T T F T T T T T T F T T F T T F F T F T F F T F T T T F F F F F T F T T T F F F F T T F F F F F T F T F F F T F F F Valid; Sound